Calculate the mean gdpPercap for each country.
Calculate the mean gdp for each country.
Create a graph of the total population of each continent over time.
For each continent, what country had the smallest population in 1952, 1972, and 2002? (google for help if you need to!)
library(gapminder)
library(ggplot2)
library(dplyr)
# 1. Calculate the mean gdpPercap for each country.
gapminder %>%
group_by(country) %>%
summarise(mean_gdpPercap = mean(gdpPercap))
## Source: local data frame [142 x 2]
##
## country mean_gdpPercap
## 1 Afghanistan 802.6746
## 2 Albania 3255.3666
## 3 Algeria 4426.0260
## 4 Angola 3607.1005
## 5 Argentina 8955.5538
## 6 Australia 19980.5956
## 7 Austria 20411.9163
## 8 Bahrain 18077.6639
## 9 Bangladesh 817.5588
## 10 Belgium 19900.7581
## .. ... ...
# 2. Calculate the mean gdp for each country.
gapminder %>%
mutate(gdp = gdpPercap * pop) %>%
group_by(country) %>%
summarise(mean_gdp = mean(gdp))
## Source: local data frame [142 x 2]
##
## country mean_gdp
## 1 Afghanistan 12709647583
## 2 Albania 9094669267
## 3 Algeria 96735171261
## 4 Angola 25532681843
## 5 Argentina 266754123835
## 6 Australia 320253755823
## 7 Austria 158579002935
## 8 Bahrain 7694793798
## 9 Bangladesh 80648494456
## 10 Belgium 197371599665
## .. ... ...
# 3. Create a graph of the total population of each continent over time.
gapminder %>%
group_by(continent) %>%
summarise(total_pop = sum(pop)) %>%
ggplot(data = ., aes(x = continent, y = total_pop)) +
geom_bar(stat = "identity")
# Note - read the error message if you have difficulties! We can talk about why
# we do this in class if you are curious.
# Alternatively you could plot points:
gapminder %>%
group_by(continent) %>%
summarise(total_pop = sum(pop)) %>%
ggplot(data = ., aes(x = continent, y = total_pop)) +
geom_point()
# 4. For each continent, what country had the smallest population in 1952, 1972,
# and 2002? (google for help if you need to!)
gapminder %>%
filter(year %in% c(1952, 1972, 2002)) %>%
group_by(continent, year) %>%
slice(which.min(pop))
## Source: local data frame [15 x 6]
## Groups: continent, year
##
## country continent year lifeExp pop gdpPercap
## 1 Sao Tome and Principe Africa 1952 46.471 60011 879.5836
## 2 Sao Tome and Principe Africa 1972 56.480 76595 1532.9853
## 3 Sao Tome and Principe Africa 2002 64.337 170372 1353.0924
## 4 Trinidad and Tobago Americas 1952 59.100 662850 3023.2719
## 5 Trinidad and Tobago Americas 1972 65.900 975199 6619.5514
## 6 Trinidad and Tobago Americas 2002 68.976 1101832 11460.6002
## 7 Bahrain Asia 1952 50.939 120447 9867.0848
## 8 Bahrain Asia 1972 63.300 230800 18268.6584
## 9 Bahrain Asia 2002 74.795 656397 23403.5593
## 10 Iceland Europe 1952 72.490 147962 7267.6884
## 11 Iceland Europe 1972 74.460 209275 15798.0636
## 12 Iceland Europe 2002 80.500 288030 31163.2020
## 13 New Zealand Oceania 1952 69.390 1994794 10556.5757
## 14 New Zealand Oceania 1972 71.890 2929100 16046.0373
## 15 New Zealand Oceania 2002 79.110 3908037 23189.8014